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PLANE ELASTIC PROBLEM FOR AN INHOMOGENEOUS LAYERED BODY

UDC 539.3A. E. Alekseev, V. V. Alekhin, and B. D. Annin

A plane elastic problem for an inhomogeneous elastic layered body bounded by equidistant convex
curves is considered. A numerical algorithm for solving the problem is proposed and implemented.

Introduction. Various procedures of constructing equations governing elastic deformation of multilayered
structures are considered in [1–3].

In the present paper, to construct equations that describe elastic deformation of a layered body, we use the
results of [4–7], which allows us to formulate correct conjugation conditions for stresses and displacements at the
interlayer boundaries. The results obtained can be used to optimize layered structures [8].

1. Curvilinear Coordinate System. Let L be a sufficiently smooth closed convex curve bounding a
domain D. We assume that the radius of curvature at each point of L is not smaller than ρ∗.

Let R be an arbitrary point of the curve L (Fig. 1), t and n be, respectively, the unit tangent and normal
vectors to L at the point R, and β be the angle between the tangent t and the x axis such that β = π/2 at the
point of intersection of L and the x axis. Let the origin (point O) lie inside the domain D. The equations of the
oval L can be written in the parametric form [9]:

xL(β) =
dF (β)
dβ

cosβ + F (β) sinβ, yL(β) =
dF (β)
dβ

sinβ − F (β) cosβ,
π

2
6 β 6

5π
2
.

Here xL(β) and yL(β) are the Cartesian coordinates of the point R and F (β) > 0 is the periodic (with a period of
2π) support function of the contour L (distance from the point O to the tangent t). Each value of β ∈ [π/2, 5π/2)
corresponds to one and only one point R ∈ L. The radius of curvature of L is ρ = ρ(β) = F (β) + d2F (β)/dβ2 > ρ∗,
and the unit vectors t and n have the form t = (cosβ, sinβ) and n = (sinβ,− cosβ).

We consider the orthogonal curvilinear coordinate system (α, β) induced by the contour L with the support
function F (β):

x = x(α, β) =
dF (β)
dβ

cosβ + (F (β) + α) sinβ,

y = y(α, β) =
dF (β)
dβ

sinβ − (F (β) + α) cosβ,

π

2
6 β 6

5π
2
, α > 0. (1.1)

The Jacobian of coordinate transformation has the form J(α, β) = D(x, y)/D(α, β) = ρ(β) +α > 0. It follows from
(1.1) that the coordinate lines α = const are equidistant curves with the support function Fα = Fα(β) = F (β) +α,
and the coordinate lines β = const form a family of straight lines normal to L.

2. Equations of Plane Elastic Problem in the Curvilinear Coordinate System (α, β). We write
the equations of the plane elastic problem in the orthogonal curvilinear coordinate system (α, β).

The stresses σαα, σαβ , and σββ satisfy the equations of equilibrium

∂σαα
∂α

+
1

ρ+ α

∂σαβ
∂β

+
σαα − σββ
ρ+ α

= 0,
∂σαβ
∂α

+
1

ρ+ α

∂σββ
∂β

+
2σαβ
ρ+ α

= 0.

The strain tensor is expressed in terms of the displacement-vector components u = uαn + uβt (uα and uβ
are functions of α and β, respectively):
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Fig. 1
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∂uα
∂α

, eββ =
1

ρ+ α

∂uβ
∂β

+
1

ρ+ α
uα, eαβ =

1
2

(∂uβ
∂α

+
1

ρ+ α

∂uα
∂β
− uβ
ρ+ α

)
.

The strains are related to the stresses by Hooke’s law:

eαα =
1− ν2

E

(
σαα −

ν

1− ν
σββ

)
, eββ =

1− ν2

E

(
σββ −

ν

1− ν
σαα

)
,

(2.1)

2eαβ = σαβ/µ, 2µ = E/(1 + ν).

Here E and µ are Young’s modulus and shear modulus, respectively, and ν is Poisson’s ratio.
3. Equations of Elastic Deformation of a Cylindrical Shell of Oval Cross Section. We consider

an infinitely long body of thickness 2h bounded by the coordinate surfaces α1, α2, β1, and β2: 0 < α1 < α2 =
α1 + 2h and π/2 6 β1 < β2 < 5π/2. We introduce the coordinate ξ ∈ [−1, 1] related to α by the formula
α = (α1 + α2)/2 + ξ(α2 − α1)/2.

Following [4–7], we approximate the stresses by truncated series in Legendre polynomials Pk(ξ):

2hσββ = N + (3M/h)P1(ξ), σαα = p0 + ∆pP1(ξ),

2hσαβ = Q+ 2h∆qP1(ξ) + (2hq0 −Q)P2(ξ), (3.1)

∆q = (q+ − q−)/2, q0 = (q+ + q−)/2, ∆p = (p+ − p−)/2, p0 = (p+ + p−)/2.

Here N = h

1∫
−1

σββ dξ is the force, M = h2

1∫
−1

σββξ dξ is the moment, Q = h

1∫
−1

σαβ dξ is the transverse shear force,

and q± = σαβ |ξ=±1 and p± = σαα|ξ=±1 are, respectively, the shear and normal stresses at the boundary surfaces
α = α1, α = α2.

The displacements uβ and uα are approximated by the truncated series

uβ = u+ ψP1(ξ) + (u0 − u)P2(ξ) + (∆u− ψ)P3(ξ), uα = v + ∆vP1(ξ) + (v0 − v)P2(ξ),

∆u = (u+ − u−)/2, u0 = (u+ + u−)/2, ∆v = (v+ − v−)/2, v0 = (v+ + v−)/2.

Here u =
1
2

1∫
−1

uβ dξ is the β-displacement averaged through the thickness, v =
1
2

1∫
−1

uα dξ is the α-displacement

averaged through the thickness, and u± = uβ |ξ=±1 and v± = uα|ξ=±1 are, respectively, the tangential and normal
displacements at the boundary surfaces α = α1, α = α2.

The strains are approximated by the truncated series

eββ =
1
ρ0

(du
dβ

+ v +
dψ

dβ
P1(ξ)

)
, eαα =

∆v
h

+ 3
v0 − v
h

P1,

(3.2)

2eαβ =
∆u
h

+
1
ρ0

( dv
dβ
− u
)

+ 3P1
u0 − u
h

+ 5P2
∆u− ψ

h
.

Here ρ0 = ρ+ h = (α1 + α2)/2.
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Substituting stresses (3.1) and strains (3.2) into Hooke’s law (2.1) and equating the coefficients of the same
Legendre polynomials Pk(ξ), we obtain

1
ρ0

(du
dβ

+ v
)

=
N

2hE∗
− ν∗p0

E∗
,

1
ρ0

dψ

dβ
=

3M
2h2E∗

− ν∗∆p
E∗

,

(3.3)
1
ρ0

( dv
dβ
− u
)

+
∆u
h

=
1

2hµ
Q;

3
u0 − u
h

=
∆q
µ
, 5

∆u− ψ
h

=
q0

µ
− Q

2hµ
,

(3.4)
∆v
h

=
p0

E∗
− ν∗

E∗
N

2h
, 3

v0 − v
h

=
∆p
E∗
− ν∗

E∗
3

2h2
M.

Here E∗ = E/(1− ν2) and ν∗ = ν/(1− ν).
The equations of equilibrium have the form

1
ρ0

(dN
dβ

+Q
)

+ 2∆q = 0,
1
ρ0

(dQ
dβ
−N

)
+ 2∆p = 0,

1
ρ0

dM

dβ
−Q+ 2hq0 = 0. (3.5)

For given external stresses {p±, q±}, Eqs. (3.3) and (3.5) constitute a closed system of ordinary differential
equations for unknown functions N , M , Q, u, ψ, and v. The functions u± and v± (displacements at the boundaries
ξ = ±1) are determined from the algebraic equations (3.4).

4. Equations of a Layered Body Composed of Equidistant Layers. We consider a curve L0 with a
support function F0(β). The curves Li (i = 1, n) with the support functions Fi(β) = Fi−1(β) + 2hi form a family
of equidistant curves with the distance 2hi between the neighboring curves Li and Li−1. The radius of curvature
of Li is ρi = ρi−1 + 2hi (i = 1, n).

Let B be a continuous body composed of individual layers Bi (i = 1, n) bounded by the curves Li−1 and Li.
The contour Li is the interface between the layers Bi and Bi+1 (i = 1, n). The line L0 coincides with L.

We denote the quantities corresponding to the layer Bi by the superscript i. Using the algebraic equa-
tions (3.4), we obtain the expressions for (p+)i, (q+)i, (v+)i, and (u+)i:

(p+)i = −3(E∗)i

hi
(v−)i − 2(p−)i +

3(E∗)i

hi
vi +

3νi

2hi
(
N i − M i

hi

)
,

(q+)i =
15µi

hi
(u−)i + 4(q−)i +

15µi

hi
(−ui + ψi)− 3Qi

2hi
,

(4.1)

(v+)i = −2(v−)i + 3vi − hi

(E∗)i
(p−)i +

(ν∗)i

2(E∗)i
(
N i − 3M i

hi

)
,

(u+)i = 4(u−)i +
hi

µi
(q−)i − 3ui + 5ψi − Qi

2µi
.

The following conditions should be satisfied at the interfaces Li (i = 1, n− 1):

(p+)i = (p−)i+1, (q+)i = (q−)i+1, (v+)i = (v−)i+1, (u+)i = (u−)i+1. (4.2)

We confine ourselves to the case where the stresses

(q−)1 = Q0, (q+)n = Qn, (p−)1 = P0, (p+)n = Pn (4.3)

are specified at the face lines L0 and Ln of the layered body B. From the system of linear algebraic equations
(4.1)–(4.3), we obtain

(p+)i = Ai1Pn +Ai2P0 +
i∑

k=1

(ai1kv
k + ai2kN

k + ai3kM
k),

(v+)i = Bi1Pn +Bi2P0 +
i∑

k=1

(bi1kv
k + bi2kN

k + bi3kM
k),
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Fig. 2 Fig. 3

(q+)i = Ci1Qn + Ci2Q0 +
i∑

k=1

(ci1ku
k + ci2kψ

k + ci3kQ
k),

(u+)i = Di
1Qn +Di

2Q0 +
i∑

k=1

(di1ku
k + di2kψ

k + di3kQ
k),

(4.4)

Vn = (v+)n = Bn1 Pn +Bn2 P0 +
n∑
k=1

bn1kv
k + bn2kN

k + bn3kM
k),

V0 = (v−)1 = B0
1Pn +B0

2P0 +
n∑
k=1

(b01kv
k + b02kN

k + b03kM
k),

Un = (u+)n = Dn
1Qn +Dn

2Q0 +
n∑
k=1

dn1ku
k + dn2kψ

k +An3kQ
k),

U0 = (u−)1 = D0
1Qn +D0

2Q0 +
n∑
k=1

(d0
1ku

k + d0
2kψ

k + d0
3kQ

k).

Substitution of Eqs. (4.4) into Eqs. (3.3) and (3.5) yields the system of linear ordinary differential equations

dX

dβ
= AX +B, (4.5)

where X = (u1, . . . , un, ψ1, . . . , ψn, Q1, . . . , Qn, v1, . . . , vn, N1, . . . , Nn,M1, . . . ,Mn) is the vector of unknown func-
tions.

5. Examples of Solutions. As an example, we consider elastic deformation of an infinite layered tube
with an elliptic internal contour. In this case, the support function F (β) and the radius of curvature ρ(β) have the
form

F (β) =
√
a2 sin2 β + b2 cos2 β, ρ(β) = a2b2/F (β), (5.1)

where a and b are the semiaxes of the ellipse.
The tube is subjected to internal pressure. The boundary conditions (4.3) become

Q0 = 0, Qn = 0, P0 = −100 MPa, Pn = 0. (5.2)

It follows from (5.1) and (5.2) that the problem is symmetric about the coordinate axes Ox and Oy. There-
fore, the differential equations (4.5) are supplemented by the boundary conditions

Xi(π/2) = 0, Xi(π) = 0, i = 1, 3n. (5.3)

The boundary-value problem (4.5), (5.3) is solved numerically by Godunov’s method [10].
To verify the algorithm proposed, we considered the deformation of a single-layered tube (n = 1). In this

case, Eqs. (3.3)–(3.5) yield the exact solution for the hoop force N and transverse shear force Q:

N = −P0F (β), Q = P0
dF (β)
dβ

. (5.4)
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The calculations were performed for the following physical and geometrical parameters: E = 2.1 · 105 MPa,
ν = 0.3 (steel), h = 0.05 m, a = 1.5 m, and b = 0.5 m.

The maximum differences between the values of N and Q obtained by the numerical method and those
calculated by formulas (5.4) are 0.1 and 0.15%, respectively. Figure 2 shows the normal (v) and tangential (u)
displacements of the mid-surface versus the angle β.

We consider the problem of elastic deformation of a three-layered tube with the following parameters:
E = 2.1 · 105 MPa and ν = 0.3 (steel) for the internal layer, E = 2.7 · 103 MPa and ν = 0.27 (spheroplastic) for
the middle layer, and E = 1.2 · 105 MPa and ν = 0.32 (titanium alloy) for the external layer. The geometrical
parameters were hi = 1/60 m (i = 1, 3), a = 1.1 m, and b = 0.9 m. Figure 3 shows the forces N i versus the angle
β for i = 1, 2, and 3 (curves 1–3, respectively). The calculations were performed on a Pentium-II computer.

This work was partly supported by the Ministry of Education of Russian Federation (Grant No. E-00-4.0-
120).
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